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Abstract 

Two main distributions are combining by using the logit of beta function by 
Jones [10]. The weighted Weibull distribution proposed by Shahbaz et al. [19] 
and beta distribution in order to have a better distribution (beta-weighted 
Weibull distribution) than each of them individually in terms of the estimate of 
their characteristics in their parameters. We study and provide a 
comprehensive treatment of the mathematical properties of the beta weighted 
Weibull distribution and derive expressions for its moments and moment 
generating function, survival rate function, hazard rate function, skewness and 
kurtosis, coefficient of variation and asymptotic behaviours. We also discuss 
maximum likelihood estimation and provide formulae for the elements of the 
Fisher information matrix. The new distribution is apply to a lifetime data set 
and clearly shows that it is much more flexible and has a better representation 
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of data than weighted Weibull distribution. We hope that this model may 
attract wider application in biology, biomedical, environmetric, and lifetime 
data analysis. 

1. Introduction 

The Weibull distribution has been a powerful probability distribution 
in reliability analysis; the weighted Weibull distribution is used to adjust 
the probabilities of the events as observed and recorded; while the beta 
distribution is one of the skewed distributions used on describing 
uncertainty or random variation on a system. Patil and Rao [18] 
investigated how, for instance, truncated distributions and damaged 
observations can give rise to weighted distribution and Azzalini [3] 
proposed a model that can be used as an alternative to Gamma and 
Weibull distribution; and Shahbaz et al. [19] followed the same idea of 
Azzalini’s method to proposed a model that is slightly modifying with 
additional parameter called “weighted parameter”. The probability 
density function of the ( )αβλ ,,ww  distribution is given by 

( ) ( ) ( )[ ] ,0,,,,exp1exp1 1 >λβααλ−−λ−λβ
α
+α= ββ−β xxxxxf  (1) 

and the associating cumulative distribution function is given by 

( ) ( ){ }[ ( )( ){ }].1exp11
1exp11 ββ α+−−
+α

−−−
α
+α= xxxFX  (2) 

Studies on generalized forms of weighted Weibull distribution are 
scanty. This paper is arranged as follows: We introduce the new proposed 
beta weighted Weibull distribution (BWW) including the density and 
distribution function, the asymptotic behaviours, survival rate function, 
hazard rate function, etc. and special models these were studies in 
Section 2. In Section 3, we discussed moment and moment generating 
function. Section 4 contains the parameter estimation, in Section 5, 
empirical application to lifetime data set and Section 6 concludes the 
study.  
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2. Methods 

2.1. The new proposed beta weighted Weibull distribution  

Numerous works have been done concerning beta distribution 
combined with other distributions, in particular, after recent works of 
Eugene and Famoye [6] and Jones [10], beta generalized logistic     
(Morais et al. [14]), beta log-logistic (Lemonte [11]), beta-hyperbolic 
secant (Fischer and Vaughan [8]), beta-Gumbel (Nadarajah and Kotz [15]), 
moments of the beta Weibull (Cordeiro et al. [4]), beta Weibull (Famoye 
et al. [7]), beta exponential (Nadarajah and Kotz [16]), beta Pareto 
(Akinsete et al. [1]), beta Rayleigh (Akinsete and Lowe [2]), beta modified 
Weibull (Cordeiro et al. [5]), beta exponentiated Pareto (Zea et al. [12]), 
beta Nakagami (Shittu and Adepoju [20]) beta-beta among others. 

Now, let X be a random variable form the distribution with 
parameters and defined in (1) using the logit of beta function by Jones 
[10] 

( ) ( ) ( )[ ] ( )[ ] ( ).1, 111 xgxGxGbaBxg ba −−− −=   (3) 

The beta weighted Weibull ( )βαλ ,,, baBWW  distribution is obtained as 

follows: 

( ) ( )
( )

1
111

111
,

1 −
α+−−













 





 −

+α
−





 −

α
+α=

ββ a
xx

BWWD baBxg AA  

( )
1

111
1111

−
α+−−













 





 −

+α
−





 −

α
+α−×

ββ b
xx AA  

,11 1 




 −λβ

α
α+×

ββ αλ−λ−−β xxx AA   (4) 

where ( ) ( )xFxG =  and ( ) ( ) βαλ= ,,,,, baxfxg  and ,0>x  
( ).,,,,~ βαλbaBWWDx  
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In (4) above, when ,1=b  it becomes exponentiated weighted Weibull, 

when ,1=a  it becomes Lehmann type II weighted Weibull (Badmus et 

al. [17]) and when ,1=β  the distribution also leads to beta weighted 

distribution (all are new special sub-models). Then, set ,1== ba  it 

becomes weighted Weibull distribution (parent distribution). Again, 
assume we set 1=λ  in (4), we have 

( ) ( )
( )

1
111

111
,

1
−

α+−−











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
−

α
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xx
BWWD baBxg AA  

( )
1

111
1111

−
α+−−


























−

+α
−




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


−

α
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xx AA  

.11 1 




 −β

α
α+×

ββ α−−−β xxx AA   (5) 

Such that, ( ).,,1,,~ baBWWDX βα  

From (5), set 

( ) ( ) ,11
111 1







 





 −

+α
−





 −

α
+α=

ββ α+−− xxxt AA   (6) 

i.e.,  

( ) ( ) 




 −

α
+α














 βα+

+α
−β

α
+α=

βββ −α+−−β−−β xxx xxdx
dt AAA 1111

11 111  

 ( ) ,11
1 1 





 −

+α
−

βα+− xA  

putting dx into (5), we get 

( ) ( )
( )

1
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111
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1 −
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that is, 

( ) ( )( ( ) ) .11 1

β

αλ−β−ββ

α

−λ−α+λβ
=

∂
∂

βyeyey
y
t  

 Equation (5) becomes the probability density function of BWW 
distribution and can be rewritten as 

( ) ( ) [ ] [ ] .1, 111
x
tttbaBxg ba

BWW ∂
∂−= −−−  (8) 

 

Figure 1. Figure shows the graph of pdf of the BWWD distribution and it 
is clear that indeed it is rightly skewed and where α=c  and .β=d  

2.1.1. Cumulative density function 

The cumulative distribution function (cdf) is deriving and the 
expression in (7) is given as 

( ) ( ) ( )dttfxXPxG
x

BWWD ∫=≤=
0
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α
+α×

ββ α−−−β AA   (9) 
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substituting (5) in (8), we obtain 

( ) ( ) ( ) ( ) ;1,
1 11

0
dtTTbaBxXPxG bax

BWWD
−− −=≤= ∫  

( ) ( ) ( ) ( )
( ) ,,

,;11 11
0 baB

batBdtTTabBxG bax
BWWD =−= −−∫  (10) 

where ( )batB ,;  is called an incomplete beta function. 

 

Figure 2. This figure also shows the graph of the CDF of the BWW 
distribution for .2and,4,3,2 ==== dcba  

2.1.2. Survival rate function 

The survival rate function of a random variable y with cumulative 
distribution function ( )yG  is given by 

( ) ( ),1 xGxS BWWBWW −=  

where ( )xGBWW  equal to (10), therefore, 

( ) ( ) ( )
( ) .,

,;,
baB

batBbaBxSBWW
−

=   (11) 
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2.1.3. Hazard rate function 

( ) ( )
( ) ,1 xG

xgxh
BWW

BWW
BWW −

=  

 where ( ) ( ) ( ) tttbaBxg ba
BWW ′−= −−− 111 1,  and ( )xGBWW  as in (10). 

Substituting ( )xgBWW  and ( )xGBWW  in the above expression of 

hazard function, we obtained the hazard rate function of the BWW 
distribution as given below:  

( ) ( ) ( )
( ) ( ) ,,;,

1, 111

batBbaB
tttbaBxh

ba
BWW −

′−
=

−−−
  (12) 

where t is the distribution in (6). 

 

Figure 3. The graph of the hazard rate of the beta weighted Weibull 
distribution for ,1,5.0,2 =α== ba  and 2=β  is then shown. 

2.1.4. The asymptotic behaviour 

The asymptotic properties of the BWW distribution are examined by 
considering the behaviour of ( )xgBWWx ∞→

lim  and ( )xgBWWx 0
lim
→

 as follows: 
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xx
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( ) ( )
1

111111
−

α+−−












 





 −

α
+α−−

α
+α−×

ββ
b

xx AA  

.11 1 




 −β

α
+α×

ββ α−−−β xxx AA  

For the sake of simplicity, we take the limit of 

,011lim 1
0

=




 −β

α
+α=

ββ α−−−β
→

xx
x

x AA  

 also 

.011lim 1 =




 −β

α
+α=

ββ α−−−β
∞→

xx
x

x AA  

This has shown that at least one mode exists. According to literature, 
whenever, ∞→x  and ,0→x  then the PDF also tends to zero, hence 

the BWW distribution has mode. 

2.2. Special models  

2.2.1. Special sub-models  

The density (4) is important since it also includes as special sub-
models, some distributions not previously focused on or considered in the 
existing literature. The new special sub-models are given below: 

(a) When 1=β  in (4) the distribution becomes beta weighted 

exponential distribution (new). 

(b) Setting 1=β== ba  in (4) reduces to weighted exponential (WE) 

(Gupta and Kundu [9]) distribution and weighted Weibull (WW) when 

1== ba  and βα=α  (Mahdy Ramadan [13]). 

(c) When ,1=a  density (5) becomes Lehmann type II weighted 

Weibull (LWW) (Badmus et al. [17]) distribution (new). 
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(d) Then, density (5) can also be simplifies to new exponentiated 
weighted Weibull distribution when 1=b  (new) and the WW 
distribution being the parent distribution (as exemplar) when 1== ba  
(Shahbaz et al. [19]). 

3. Moments and Moment Generating Function 

Hosking [21] described and used in Badmus et al. [17] that when a 
random variable following a generalized beta generated distribution that 

is ( ),,,,~ cbafGBGx  then [ ] ,
1

1 r
r cFE ∪−=µ′  where ( ) cbaB ,,~∪  is a 

constant and ( )xF 1−  is the inverse of CDF of the weighted Weibull 

distribution, since ( )αβ,,, baBWW  distribution is a special form when 

.1=c  We then derive the moment generating function (mgf) of the 

proposed distribution ( ) ( )txeEtm =  and the general r-th moment of a 

beta generated distribution is defined by 

( ) [ ( )] [ ] .1,
1 1111

0
dyxxxFbaB

bar
r

−−− −=µ′ ∫   (13) 

Cordeiro et al. [5] discussed another mgf of y for generated beta 
distribution 

( ) ( ) ( ) ( ),1;,
1

1,
1

0
−ρ












 −
−= ∑∞

=
ajrk

j

b

baBtM i
j

  (14) 

where 

( ) ( )[ ] ( ) ., dxxfxFerk mtx∫
∞

∞−
=ρ  

Therefore, 

( )
( ) ( ) ( )[ ] ( ) ( ) ,

1
1,

1 11
0

dxxfxFe
j

b

baBM jatxj
j

t
x

−+∞

∞−

∞

= ∫∑ 











 −
−=  (15) 
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by substituting both pdf and cdf ( ) ( )( )xFxf &  of the weighted Weibull 

distribution into (15), we have 

( )
( )

( ) ( ) 





 





 −

α
+α













 −
−=

β−

=
∫∑ xtxj

j

t
xBWWD

j

b

baBM AA 111
1,

1

0



 

( )
( )

,1111
1 1

11
1 





 −β

α
+α













 −

+α
−

βββ α−−−β
−+

α+− xx
ja

x xx AAA  

(16) 

 setting 1== ba  in (16) gives the moment generating function of the 
parent distribution. 

Now, to obtain the r-th moment of the beta-weighted Weibull 
distribution, we have the following:  Since the moment generating 
function of weighted Weibull distribution by Shahbaz et al. [19] is given 
by 

( ) dxxtM xax
x 





 −β

α
+α=

ββ α−−−β
∞

∫ AA 11 1
0

 

( ){ } .111!
0









β
+α+−α+

α
= β−

∞

=
∑ jrj

t jj

j
  (17) 

Equation (15) can be written as 
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α
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



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β
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∞
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( )( ) ( ) ( ) ( ){ }β−
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t
i

b
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11,
1
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.11
1111
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1
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











 





 −

+α
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
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
 −

α
+α









β
+×

ββ ia
xxj AA  

(18) 

The r-th moment of BWW distribution can be written from (18) as 

 ( ) ( ) ( ) ( ) 




 −−==µ ∑

∞

=
i

b
baBXE i

j

r
rBWWD

11,
1

0

1  

( )
( ) 11

111
111 −+

α+−−












 





 −

+α
−





 −

α
+α×

ββ ia
xx AA  

( ){ } .111! 









β
+Γα+−α+

α
× β− r

r
t rr

  (19) 

Putting 1== ba  in (19) leads to the r-th moment of the parent 
distribution by Shahbaz et al. [19] and is given by 

( ) ( ){ } .1111 







β
+Γα+−α+

α
==µ β− rrXE rr

r  

It is then easy to obtain the moments and other measures, like the 
coefficient of variation ( )βα,,, baVBWWD  of ( ),,,, βαbaBWWD  the 

skewness ( )βα,,, baSBWWD  and kurtosis ( )βα,,, baKRBWWD  can also 

be easily obtained in explicit forms from (19). 

4. Parameter Estimation 

An attempt is made to obtain the maximum likelihood estimate 
MLEs of the parameters of the BWW distribution. Now, let θ  be a vector 
of parameters, Cordeiro et al. [5] gave the log-likelihood function for 

( ),,,, τ=θ cba  where ( ),, βα=τ  and even was used by Badmus et al.  

[17]. 
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( ) ( )[ ] ( )[ ]τ+−=θ ∑
=

,log,loglog 1
1

XfbaBnCnL
n

i
 

( ) ( ) ( ) [ ( )],,1log1,log1 1
1

1
1

τ−−+τ−+ ∑∑
==

XFbXFa c
n

i

n

i
 (20) 

setting ,1=c  reduces the class of generalized beta distribution to the 

class of beta generated distribution. Then, we obtain ( )τ=θ ,1,, ba  given 

as 

( ) ( )[ ] ( )[ ] ( ) ( )τ−+τ+−=θ ∑∑
==

,log1,log,log 1
1

1
1

XFaXfbaBnL
n

i

n

i
 

( ) ( )[ ],,1log1 1
1

τ−−+ ∑
=

XFb c
n

i
 

 where ( )τ;xf  and ( )τ;xF  as in (1) and (2) above. 
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



 −β

α
+α+−=

ββ α−−−β

=

θ ∑ xx
n

i
BWWD xbaBnL AA 11log,log 1

1
 

( ) ( )



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
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
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
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α
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1
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111log1 AA  

( ) ( ) .11
1111log1 1

1




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



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α
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=
∑ xx

n

i
b AA   

(21) 

 Using differential equation in (21) with respect to ( )βα,,, ba  and recall 

that ( ) ( ) ( )
( )ba

babaB
+Γ
ΓΓ=,  
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( ) ( )
( )

( )
( ) α

+α+
+Γ
+Γ+

Γ
Γ−=

∂
θ∂ ∑

=

1log
1

11 n

x
ba
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ana
L  

( ) .11
11 1





 





 −

+α
−





 −

ββ α+−− xx AA   (22) 

( ) ( ) ( ) log
1

11

∑
=

+
+Γ
+Γ+

Γ
Γ−=

∂
θ∂

n

x
ba
banb

bnb
L  

( ) .11
111

11 1







 





 −

+α
−





 −

+α
−

ββ α+−− xx AA  (23) 
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
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

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
 −β

+α



 



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=
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x x
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1
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1
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
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
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
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∂
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ββ

ββ
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=
∑ xx

xxn

x
a

1

1

1 11
111

11
111

1

1
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( )

( )
.

11
1111
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1
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
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



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α
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

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α
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 (24) 
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Equations (22)-(25) can be solved by using Newton Ralphson method to 

obtain the βα ˆ,ˆ,ˆ,ˆ ba  the MLE of ( ),,,, βαba  respectively. 

Taking second derivatives of equations (22), (23), (24), and (25) with 
respect to the parameters above we can derive the interval estimate and 
hypothesis tests on the model parameter and inverse of Fisher’s 
information matrix needed. 

5. Results and Discussion 

3.1. Application to lifetime data  

This section, we apply the data set investigated by Shahbaz et al. [19] 
on life components in years to compare the BWW and WW distribution. 
The data contains life (grouped data say ( )0.5,,0.20.1,0.10 >−− …  

and the data set (secondary data) consists of frequency all together 
123619 to compare between the results of the proposed BWW, LWW, 
EWW, and WW. Using R software (codes) to determine some descriptive 
statistics and the maximum likelihood estimates and the maximized log-
likelihood for the beta weighted Weibull (BWW) and weighted Weibull 
(WW) distributions (with corresponding standard errors in parentheses) 
are shown in the Tables 1 and 2 below: 

Table 1. Descriptive statistics for the life length of components data in 
years 

Min 1Q  Median Mean 3Q  Max Skewness Kurtosis 

0.000003 0.462500 0.921500 0.959600 1.458000 5.500000 0.1289951 1.926338 
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Table 2. MLEs of the model parameters and the corresponding standard 
error 

 Estimates and standard errors in parentheses 

Model â  b̂  α̂  β̂  

BWW 8.95941 8.17089 8.36111 7.91621 

 (0.89564) (0.80891) (0.84003) (0.78043) 

LWW -:- 7.90434 8.44282 8.70003 

when 1=a   (0.68954) (0.73013) (0.75332) 

EWW 7.90434 -:- 8.44282 8.70003 

when 1=b  (0.68954)  (0.73013) (0.75332) 

WW -:- -:- 8.64992 8.04152 

When 1== ba    (0.60540) (0.57077) 

Since the values of the estimates are smaller for the BWW 
distribution compared to other models, therefore, the new model is better 
representative model to these data. 

The asymptotic covariance matrix of the maximum likelihood 
estimates for the beta weighted Weibull distribution, which is generated 
from the inverse of Fisher’s information matrix and is given by 

.

60907454.002353514.002069611.0026744474.0

02353514.0705642669.002534553.002221849.0

02069611.0025345533.065433442.002880174.0

02674447.000221849.002880174.080216948.0

























−−−

−−

−−−

−

 

6. Conclusion 

The three parameter weighted Weibull distribution later reduced to 
two parameter by setting 1=λ  for the sake of simplicity pioneered by 
Shahbaz et al. [19], is extended by introducing two additional shape 
parameters called the beta weighted Weibull (BWW) distribution having 
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a broader class of density functions and hazard rate. This is obtained by 
taking (2), as baseline cumulative density function of the logit of beta 
function defined by Jones [10]. We present a detailed study on the 
mathematical properties of the new propose distribution; and the new 
model includes as special sub-models the Lehmann weighted Weibull 
(LWW) (Badmus et al. [17]), weighted exponential (WE) (Gupta and 
Kundu [9]), weighted Weibull (WW) (Mahdy Ramadan [13]), weighted 
Weibull (WW) (Shahbaz et al. [19]) and other distribution. We also derive 
the density and distribution function, survival rate, hazard rate, 
asymptotic behaviours, moments and moment generating function. The 
parameters of the propose distribution were estimated and inverse of 
fisher information matrix is derived. Application to lifetime data set 
indicates that apart from the beta weighted Weibull is more flexible, it is 
also has better representation of data and superior to the fit of its 
principal sub-model. Furthermore, we hope that the new model may be 
applicable to many areas such as survival analysis, economics, 
engineering, environmental etc.. 
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